Simpler Efficient Group Signatures from Lattices

Phong Nguyen¹, Jiang Zhang², Zhenfeng Zhang²

¹INRIA, France and Tsinghua University, China ²Institute of Software, Chinese Academy of Sciences

> PKC 2015 (March 30 — April 1, 2015) NIST — Gaithersburg, Maryland USA

Outline

- 2 Our Approach
- 3 The Split-SIS Problem

4 Conclusion

Digital signatures have been widely used to

Digital signatures have been widely used to

However, two privacy limitations:

the signer's identity is revealed;
 multiple signatures are linkable.

Group Signature

Group Signature is introduced by Chaum and van Heyst [CvH'91]. (static groups) $\Pi_{GS} = (\text{KeyGen}, \text{Sign}, \text{Verify}, \text{Open})$

Group Signature

Group Signature is introduced by Chaum and van Heyst [CvH'91]. (static groups) $\Pi_{GS} = (\text{KeyGen}, \text{Sign}, \text{Verify}, \text{Open})$

Group Signature

Group Signature is introduced by Chaum and van Heyst [CvH'91]. (static groups) $\Pi_{GS} =$ (KeyGen, Sign, Verify, Open)

Group Signature

Group Signature is introduced by Chaum and van Heyst [CvH'91]. (static groups) $\Pi_{GS} =$ (KeyGen, Sign, Verify, Open)

The State of The Art

• Introduction of group signature [CvH'91]

:

The State of The Art

- Introduction of group signature [CvH'91]
- Full anonymity and full traceability, BMW paradigm [BMW'03]

:

The State of The Art

- Introduction of group signature [CvH'91]
- Full anonymity and full traceability, BMW paradigm [BMW'03]
- CPA-anonymity, short and efficient construction [BBS'04]

•

The State of The Art

- Introduction of group signature [CvH'91]
- Full anonymity and full traceability, BMW paradigm [BMW'03]
- CPA-anonymity, short and efficient construction [BBS'04]
- "Constant size", "dynamic join", "membership revocation", [ACJT'00,CL'04,BW'06,BW'07,Groth'06,Groth'07,AFGHO'10,LPY'12]...

The State of The Art

- Introduction of group signature [CvH'91]
- Full anonymity and full traceability, BMW paradigm [BMW'03]
- CPA-anonymity, short and efficient construction [BBS'04]
- "Constant size", "dynamic join", "membership revocation", [ACJT'00,CL'04,BW'06,BW'07,Groth'06,Groth'07,AFGHO'10,LPY'12]...

Most of them are based on classic assumptions, e.g., strong RSA, sDH, DLIN, LRSW, ···

The State of The Art

Lattice-based constructions (N = #(users)):

• Gordon, Katz and Vaikuntanathan, ASIACRYPT 2010: $|gpk| = O(N), |\sigma| = O(N)$

The State of The Art

Lattice-based constructions (N = #(users)):

- Gordon, Katz and Vaikuntanathan, ASIACRYPT 2010: $|gpk| = O(N), |\sigma| = O(N)$
- Laguillaumie *et al.* [LLLS'13], ASIACRYPT 2013: Logarithmic efficiency, $|gpk| = O(\log N), |\sigma| = O(\log N)$

The State of The Art

Lattice-based constructions (N = #(users)):

- Gordon, Katz and Vaikuntanathan, ASIACRYPT 2010: $|gpk| = O(N), |\sigma| = O(N)$
- Laguillaumie *et al.* [LLLS'13], ASIACRYPT 2013: Logarithmic efficiency, $|gpk| = O(\log N), |\sigma| = O(\log N)$
- Langlois *et al.* [LLNW'14], PKC 2014: Verifier local revocation, $|gpk| = O(\log N), |\sigma| = O(\log N)$

The State of The Art

Lattice-based constructions (N = #(users)):

- Gordon, Katz and Vaikuntanathan, ASIACRYPT 2010: $|gpk| = O(N), |\sigma| = O(N)$
- Laguillaumie *et al.* [LLLS'13], ASIACRYPT 2013: Logarithmic efficiency, $|gpk| = O(\log N), |\sigma| = O(\log N)$
- Langlois *et al.* [LLNW'14], PKC 2014: Verifier local revocation, $|gpk| = O(\log N), |\sigma| = O(\log N)$
- Very recently, Ling, Nguyen and Wang, PKC 2015: Tighter reduction, $|gpk| = O(\log N), |\sigma| = O(\log N)$

The State of The Art

Lattice-based constructions (N = #(users)):

- Gordon, Katz and Vaikuntanathan, ASIACRYPT 2010: $|gpk| = O(N), |\sigma| = O(N)$
- Laguillaumie *et al.* [LLLS'13], ASIACRYPT 2013: Logarithmic efficiency, $|gpk| = O(\log N), |\sigma| = O(\log N)$
- Langlois *et al.* [LLNW'14], PKC 2014:/Verifier local revocation, $|gpk| = O(\log N), |\sigma| = O(\log N)$
- Very recently, Ling, Nguyen and Wang, PKC 2015: Tighter reduction, $|gpk| = O(\log N), |\sigma| = O(\log N)$

The BMW paradigm

The State of The Art

Lattice-based constructions (N = #(users)):

- Gordon, Katz and Vaikuntanathan, ASIACRYPT 2010: $|gpk| = O(N), |\sigma| = O(N)$
- Laguillaumie *et al.* [LLLS'13], ASIACRYPT 2013: Logarithmic efficiency, $|gpk| = O(\log N), |\sigma| = O(\log N)$
- Langlois *et al.* [LLNW'14], PKC 2014:/Verifier local revocation, $|gpk| = O(\log N), |\sigma| = O(\log N)$
- Very recently, Ling, Nguyen and Wang, PKC 2015: Tighter reduction, $|gpk| = O(\log N), |\sigma| = O(\log N)$

The BMW paradigm

LWE + SIS

Introduction This Work

We give a simpler and efficient construction, almost reducing both |gpk| and $|\sigma|$ by a factor of $O(\log N)$

Introduction This Work

We give a simpler and efficient construction, almost reducing both |gpk| and $|\sigma|$ by a factor of $O(\log N)$

Our scheme takes advantage of

an efficient encoding and a new NIZK

We give a simpler and efficient construction, almost reducing both |gpk| and $|\sigma|$ by a factor of $O(\log N)$

Our scheme takes advantage of

an efficient encoding and a new NIZK

We introduce a new problem–**Split-SIS** ($\stackrel{c}{\approx}$ the standard SIS)

Security: LWE + Split-SIS

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, define *m*-dimensional full-rank integer lattice:

$$\Lambda_q^{\perp}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^m \ s.t. \ \mathbf{A}\mathbf{x} = 0 \ \text{mod} \ q \}$$

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, define *m*-dimensional full-rank integer lattice:

$$\Lambda_q^{\perp}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^m \ s.t. \ \mathbf{A}\mathbf{x} = 0 \ \text{mod} \ q \}$$

Useful Facts:

• Generate a "uniform" A with a "trapdoor" [Ajtai'96,Peikert'09,MP'12]

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, define *m*-dimensional full-rank integer lattice:

$$\Lambda_q^{\perp}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^m \ s.t. \ \mathbf{A}\mathbf{x} = 0 \ \text{mod} \ q \}$$

Useful Facts:

- Generate a "uniform" A with a "trapdoor" [Ajtai'96,Peikert'09,MP'12]
- Sample "short vectors" from $\Lambda_q^{\perp}(\mathbf{A})$ [GPV'08,AP'09,MP'12]

Fixed $\mathbf{s} \in \mathbb{Z}_q^n$, and "noise" χ , define

$$A_{\mathbf{s},\chi} = \{ (\mathbf{u}, \mathbf{u}^T \mathbf{s} + e) \mid \mathbf{u} \leftarrow_r \mathbb{Z}_q^n, e \leftarrow_r \chi \}$$

Learning with errors (LWE):

• Computational LWE: Given polynomial samples, find s

Fixed $\mathbf{s} \in \mathbb{Z}_q^n$, and "noise" χ , define

$$A_{\mathbf{s},\chi} = \{ (\mathbf{u}, \mathbf{u}^T \mathbf{s} + e) \mid \mathbf{u} \leftarrow_r \mathbb{Z}_q^n, e \leftarrow_r \chi \}$$

Learning with errors (LWE):

- Computational LWE: Given polynomial samples, find s
- Decisional LWE: Distinguish $A_{\mathbf{s},\chi}$ from $\mathcal{U}(\mathbb{Z}_q^n \times \mathbb{Z}_q)$

$$n\left\{ \underbrace{\mathbf{A}}_{m} \times \mathbf{s} = \mathbf{u} \mod q \right\}$$

Small Integer Solution (SIS):

Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find "small" $\mathbf{s} \in \mathbb{Z}_q^m \setminus \{\mathbf{0}\}$, s.t., $\mathbf{A}\mathbf{s} = \mathbf{0} \mod q$

Inhomogeneous Small Integer Solution (ISIS):

Given $(\mathbf{A}, \mathbf{u}) \in \mathbb{Z}_q^{n \times m} \times \mathbb{Z}_q^n$, find "small" $\mathbf{s} \in \mathbb{Z}_q^m$, s.t., $\mathbf{A}\mathbf{s} = \mathbf{u} \mod q$

Small Integer Solution (SIS):

Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find "small" $\mathbf{s} \in \mathbb{Z}_q^m \setminus \{\mathbf{0}\}$, s.t., $\mathbf{A}\mathbf{s} = \mathbf{0} \mod q$

Inhomogeneous Small Integer Solution (ISIS):

Given $(\mathbf{A}, \mathbf{u}) \in \mathbb{Z}_q^{n \times m} \times \mathbb{Z}_q^n$, find "small" $\mathbf{s} \in \mathbb{Z}_q^m$, s.t., $\mathbf{A}\mathbf{s} = \mathbf{u} \mod q$

Both LWE and SIS (ISIS) $\stackrel{c}{\approx}$ SIVP_{γ} in the worst case [Ajtai'96,Regev'05,...]

Our Approach The BMW Paradigm

We first recall the BMW paradigm:

- KeyGen (κ, N) :
 - Generate the group public key *gpk*;
 - **2** Find an "identity encoding" H(gpk, j);
 - Solution derive user secret key gsk_j corresponding to H(gpk, j).

Our Approach The BMW Paradigm

We first recall the BMW paradigm:

- KeyGen (κ, N) :
 - Generate the group public key *gpk*;
 - Find an "identity encoding" H(gpk, j);
 - **(a)** derive user secret key gsk_j corresponding to H(gpk, j).

• Sign(gpk, gsk_j, M):

- Generate a proof π that gsk_j satisfies the relation determined by H(gpk,j)
- 2 Return $\sigma = \pi$

Our Approach The BMW Paradigm

We first recall the BMW paradigm:

- KeyGen (κ, N) :
 - Generate the group public key *gpk*;
 - Find an "identity encoding" H(gpk, j);
 - **(a)** derive user secret key gsk_j corresponding to H(gpk, j).
- Sign(gpk, gsk_j, M):
 - Generate a proof π that gsk_j satisfies the relation determined by H(gpk, j)
 Return σ = π

Key Issue: Find an encoding H(gpk, j) and an NIZK for H(gpk, j)!

Both constructions [GKV'10,LLLS'13] follow the BMW paradigm:

• Gordon, Katz and Vaikuntanathan, ASIACRYPT 2010: $gpk = (\mathbf{A}_1, \dots, \mathbf{A}_N),$

 $H(gpk,j) = \mathbf{A}_j$

Both |gpk| and $|\sigma|$ have linear size

Both constructions [GKV'10,LLLS'13] follow the BMW paradigm:

• Gordon, Katz and Vaikuntanathan, ASIACRYPT 2010: $gpk = (\mathbf{A}_1, \dots, \mathbf{A}_N),$ $H(gpk, j) = \mathbf{A}_j$

Both |gpk| and $|\sigma|$ have linear size

• Laguillaumie *et al.* [LLLS'13], ASIACRYPT 2013: $gpk = (\mathbf{A}_1, \dots, \mathbf{A}_{\ell})$, where $\ell = \log N$, $H(gpk, j) = \sum_{i=1}^{i=\ell} j_i \mathbf{A}_j$, where (j_1, \dots, j_{ℓ}) —binary decomposition of j

Both |gpk| and $|\sigma|$ have logarithmic size

How about the efficient encoding function used in IBE [ABB'10]?

Full rank difference $G : \mathbb{Z}_q \to \mathbb{Z}_q^{n \times n}$ $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2}),$ $H(gpk, j) = (\mathbf{A}_1 || \mathbf{A}_{2,1} + G(j) \mathbf{A}_{2,2})$

How about the efficient encoding function used in IBE [ABB'10]?

- Full rank difference $G : \mathbb{Z}_q \to \mathbb{Z}_q^{n \times n}$ $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2}),$ $H(gpk, j) = (\mathbf{A}_1 || \mathbf{A}_{2,1} + G(j) \mathbf{A}_{2,2})$
 - KeyGen (κ, N) :
 - Generate $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2})$ with a trapdoor of \mathbf{A}_1 ;
 - 2 Define $A_j := H(gpk, j) = (A_1 || A_{2,1} + G(j) A_{2,2});$
 - Sample a short vector $gsk_j = \mathbf{x}_j = (\mathbf{x}_{j,1}, \mathbf{x}_{j,2})$ from $\Lambda_q^{\perp}(\mathbf{A}_j)$.

How about the efficient encoding function used in IBE [ABB'10]?

- Full rank difference $G : \mathbb{Z}_q \to \mathbb{Z}_q^{n \times n}$ $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2}),$ $H(gpk, j) = (\mathbf{A}_1 || \mathbf{A}_{2,1} + G(j) \mathbf{A}_{2,2})$
 - KeyGen (κ, N) :
 - Generate $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2})$ with a trapdoor of \mathbf{A}_1 ;
 - 2 Define $A_j := H(gpk, j) = (A_1 || A_{2,1} + G(j) A_{2,2});$
 - Sample a short vector $gsk_j = \mathbf{x}_j = (\mathbf{x}_{j,1}, \mathbf{x}_{j,2})$ from $\Lambda_q^{\perp}(\mathbf{A}_j)$.

• Sign(gpk, gsk_j, M):

Generate a proof π that gsk_j = (x_{j,1}, x_{j,2}) and j satisfy

 gsk_j is short, and
 A₁x_{j,1} + (A_{2,1} + G(j)A_{2,2})x_{j,2} = 0

 Return σ = π

How about the efficient encoding function used in IBE [ABB'10]?

- Full rank difference $G : \mathbb{Z}_q \to \mathbb{Z}_q^{n \times n}$ $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2}),$ $H(gpk, j) = (\mathbf{A}_1 || \mathbf{A}_{2,1} + G(j) \mathbf{A}_{2,2})$
 - KeyGen (κ, N) :
 - Generate $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2})$ with a trapdoor of \mathbf{A}_1 ;
 - 2 Define $A_j := H(gpk, j) = (A_1 || A_{2,1} + G(j) A_{2,2});$
 - Sample a short vector $gsk_j = \mathbf{x}_j = (\mathbf{x}_{j,1}, \mathbf{x}_{j,2})$ from $\Lambda_q^{\perp}(\mathbf{A}_j)$.
 - Sign(*gpk*, *gsk_j*, *M*):

Generate a proof π that gsk_j = (x_{j,1}, x_{j,2}) and j satisfy

 gsk_j is short, and
 A₁x_{j,1} + (A_{2,1} + G(j)A_{2,2})x_{j,2} = 0

 Return σ = π

But we cannot efficiently prove $\mathbf{A}_1\mathbf{x}_{j,1} + (\mathbf{A}_{2,1} + \mathbf{G}(j)\mathbf{A}_{2,2})\mathbf{x}_{j,2} = \mathbf{0}$

- KeyGen (κ, N) :
 - Generate $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2})$ with a trapdoor of \mathbf{A}_1 ;
 - 2 Define $\mathbf{A}_j := H(gpk, j) = (\mathbf{A}_1 || \mathbf{A}_{2,1} + G(j) \mathbf{A}_{2,2});$
 - Sample a short vector $gsk_j = \mathbf{x}_j = (\mathbf{x}_{j,1}, \mathbf{x}_{j,2})$ from $\Lambda_q^{\perp}(\mathbf{A}_j)$.
- Sign(gpk, gsk_j, M):

Generate a proof π that gsk_j = (x_{j,1}, x_{j,2}) and j satisfy

 gsk_j is short, and
 A₁x_{j,1} + (A_{2,1} + jA_{2,2})x_{j,2} = 0

 Return σ = π

Instead, we use a simple identity function G(j) = j

• KeyGen (κ, N) :

- Generate $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2})$ with a trapdoor of \mathbf{A}_1 ;
- 2 Define $A_j := H(gpk, j) = (A_1 || A_{2,1} + G(j) A_{2,2});$
- Sample a short vector $gsk_j = \mathbf{x}_j = (\mathbf{x}_{j,1}, \mathbf{x}_{j,2})$ from $\Lambda_q^{\perp}(\mathbf{A}_j)$.
- Sign(gpk, gsk_j, M):

Generate a proof π that *gsk_j* = (**x**_{j,1}, **x**_{j,2}) and *j* satisfy

 gsk_j is short, and
 A₁**x**_{j,1} + (**A**_{2,1} + *j***A**_{2,2})**x**_{j,2} = **0**

 Return σ = π

Let $\mathbf{b} = \mathbf{A}_{2,2}\mathbf{x}_{j,2}$, we have

 $A_1 x_{j,1} + j b = (A_1 || b)(x_{j,1}; j) = -A_{2,1} x_{j,2}$ A variant of ISIS

Jiang Zhang (TCA)

The Split-SIS Problem The Description

Given $\mathbf{A} = (\mathbf{A}_1, \mathbf{A}_2) \in \mathbb{Z}_q^{n \times (m_1 + m_2)}$,

Small Integer Solution (SIS): find "small" $\mathbf{x} \in \mathbb{Z}_q^{m_1+m_2}/\{\mathbf{0}\}$, s.t., $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$.

The Split-SIS Problem The Description

Given $\mathbf{A} = (\mathbf{A}_1, \mathbf{A}_2) \in \mathbb{Z}_q^{n \times (m_1 + m_2)}$,

Small Integer Solution (SIS): find "small" $\mathbf{x} \in \mathbb{Z}_q^{m_1+m_2}/\{\mathbf{0}\}$, s.t., $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$.

Split-SIS: find $h \in \mathbb{Z}_q$ and 'small' $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{Z}_q^{m_1+m_2}/{\{\mathbf{0}\}}$, s.t.,

 $\mathbf{A}_1\mathbf{x}_1 + h\mathbf{A}_2\mathbf{x}_2 = \mathbf{0} \mod q \qquad \land \qquad (\mathbf{x}_1; h\mathbf{x}_2) \neq \mathbf{0}$

The Split-SIS Problem The Description

Given $\mathbf{A} = (\mathbf{A}_1, \mathbf{A}_2) \in \mathbb{Z}_q^{n \times (m_1 + m_2)}$,

Small Integer Solution (SIS): find "small" $\mathbf{x} \in \mathbb{Z}_q^{m_1+m_2}/\{\mathbf{0}\}$, s.t., $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$.

Split-SIS: find $h \in \mathbb{Z}_q$ and 'small' $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{Z}_q^{m_1+m_2}/\{\mathbf{0}\}$, s.t.,

 $\mathbf{A}_1\mathbf{x}_1 + h\mathbf{A}_2\mathbf{x}_2 = \mathbf{0} \mod q \qquad \land \qquad (\mathbf{x}_1; h\mathbf{x}_2) \neq \mathbf{0}$

For appropriate parameters, we prove that

Split-SIS is as hard as the standard SIS problem!

A Hash Family from Split-SIS

Define a family of functions \mathcal{H} with index $\mathbf{A}_1, \mathbf{A}_{2,2} \in \mathbb{Z}_q^{n \times m}$:

 $f_{\mathbf{A}_1,\mathbf{A}_{2,2}}(\mathbf{x}_1,\mathbf{x}_2,h) = (\mathbf{A}_1\mathbf{x}_1 + h\mathbf{A}_{2,2}\mathbf{x}_2 \mod q,\mathbf{x}_2)$

A Hash Family from Split-SIS

Define a family of functions \mathcal{H} with index $\mathbf{A}_1, \mathbf{A}_{2,2} \in \mathbb{Z}_q^{n \times m}$:

The Split-SIS Problem A Hash Family from Split-SIS

Define a family of functions \mathcal{H} with index $\mathbf{A}_1, \mathbf{A}_{2,2} \in \mathbb{Z}_q^{n \times m}$:

If Split-SIS is hard, then for some parameters \mathcal{H} is

one-way, collision-resistant, and statistically hiding "h"

The Split-SIS Problem A Hash Family from Split-SIS

Define a family of functions \mathcal{H} with index $\mathbf{A}_1, \mathbf{A}_{2,2} \in \mathbb{Z}_q^{n \times m}$:

$$f_{\mathbf{A}_1,\mathbf{A}_{2,2}}(\mathbf{x}_1,\mathbf{x}_2,h) = (\mathbf{A}_1\mathbf{x}_1 + h\mathbf{A}_{2,2}\mathbf{x}_2 \mod q,\mathbf{x}_2)$$

We directly output the second input \mathbf{x}_2

Given $(\mathbf{A}_1, \mathbf{A}_{2,2})$ and $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2)$, prove there exists $(\mathbf{x}_1, \mathbf{x}_2, h)$ such that

$$f_{\mathbf{A}_1,\mathbf{A}_{2,2}}(\mathbf{x}_1,\mathbf{x}_2,h) = \mathbf{y}$$

$$(\mathbf{A}_1 \| \mathbf{b})(\mathbf{x}_1;h) = \mathbf{y}_1 \text{ for } \mathbf{b} = \mathbf{A}_{2,2}\mathbf{y}_2$$

The Modified Construction

- KeyGen (κ, N) :
 - Generate $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2})$ with a trapdoor of \mathbf{A}_1 ;
 - **2** Define $A_j := H(gpk, j) = (A_1 || A_{2,1} + j A_{2,2});$
 - **(a)** Compute a trapdoor $gsk_j = \mathbf{T}_{\mathbf{A}_j}$ of \mathbf{A}_j .

The Modified Construction

- KeyGen (κ, N) :
 - Generate $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2})$ with a trapdoor of \mathbf{A}_1 ;
 - 2 Define $\mathbf{A}_j := H(gpk, j) = (\mathbf{A}_1 || \mathbf{A}_{2,1} + j \mathbf{A}_{2,2});$
 - $O Compute a trapdoor <math>gsk_j = \mathbf{T}_{\mathbf{A}_j} \text{ of } \mathbf{A}_j.$
- Sign(*gpk*, *gsk_j*, *M*):
 - Use gsk_j to sample a short vector $\mathbf{x}_j = (\mathbf{x}_{j,1}, \mathbf{x}_{j,2})$ from $\Lambda_q^{\perp}(\mathbf{A}_j)$;
 - 2 Compute **b** = $A_{2,2}x_{j,2}$ and **y** = $-A_{2,1}x_{j,1}$;
 - Senerate a proof π that $\mathbf{x}_{j,1}$ and j satisfy $(\mathbf{A}_1 || \mathbf{b})(\mathbf{x}_{j,1}; j) = \mathbf{y}$;
 - Return $\sigma = (\mathbf{x}_{j,2}, \pi)$.

The Modified Construction

- KeyGen (κ, N) :
 - Generate $gpk = (\mathbf{A}_1, \mathbf{A}_{2,1}, \mathbf{A}_{2,2})$ with a trapdoor of \mathbf{A}_1 ;
 - 2 Define $\mathbf{A}_j := H(gpk, j) = (\mathbf{A}_1 || \mathbf{A}_{2,1} + j \mathbf{A}_{2,2});$
 - $O Compute a trapdoor <math>gsk_j = \mathbf{T}_{\mathbf{A}_j} \text{ of } \mathbf{A}_j.$
- Sign(*gpk*, *gsk_j*, *M*):
 - Use gsk_j to sample a short vector $\mathbf{x}_j = (\mathbf{x}_{j,1}, \mathbf{x}_{j,2})$ from $\Lambda_q^{\perp}(\mathbf{A}_j)$;
 - **2** Compute **b** = $A_{2,2}x_{j,2}$ and **y** = $-A_{2,1}x_{j,1}$;
 - Senerate a proof π that $\mathbf{x}_{j,1}$ and j satisfy $(\mathbf{A}_1 || \mathbf{b})(\mathbf{x}_{j,1}; j) = \mathbf{y}$;
 - Return $\sigma = (\mathbf{x}_{j,2}, \pi)$.

 $\mathbf{x}_{j,2}$ is statistically indistinguishable w.r.t. *j*

Conclusion

We give a simpler and efficient construction, almost reducing both |gpk| and $|\sigma|$ by a factor of $O(\log N)$

Conclusion

We give a simpler and efficient construction, almost reducing both |gpk| and $|\sigma|$ by a factor of $O(\log N)$

We are so close to "Constant Size"

